@

[Jom]]
I
i

Power Systems

NHMUG

New Hampshire
Midrange User Group

SQL Writing Tips and
Techniques

Rob Bestgen
(bestgen@us.ibm.com)
IBM - Db2 for i Consultant

» SQL is a very powerful language for access data

« Utilizing it means leveraging database to do more of the work for you

* Accessing a table is only part of the story
— Itis NOT just a record level access replacement

* Goal: manipulate data to provide information

2 IBM Power Systems |
© 2018 IBM Corporation

An example

IBM Power Systems |
© 2018 IBM Corporation

A program with SQL

The day’s
orders

Get next
order

Get customer
info

Get product
info

Insert into log

ENSNAY

Loop to next

Good or bad? order
Why?

4 IBM Power Systems |
© 2018 IBM Corporation

Thinking differently

* Thinking procedurally is natural for programmers
— Do step 1, then step 2, then...

* We also think in terms of groups or collections of things
— But not often when programming

« SQL works best when written in terms of groups and relationships
— It’s relational after all

» SQL works best when we use it in terms of Sets

5 IBM Power Systems

[fre]]
l

© 2018 IBM Corporation

SQL Query Processing

With Native Record Level Access...

You tell DB2 what to do AND how to do it

With SQL...

You tell DB2 what to do, NOT how to do it

6 IBM Power Systems

[fre]]
l

© 2018 IBM Corporation

The optimizer figures

out the steps

DB2 fori j

\
Time

SQL Query Processing

© 2018 IBM Corporatiol

IBM Power Systems

Combine

© 2018 IBM Corporatiol

IBM Power Systems

l

Tell DB2 - “Combine” Your SQL

Multiple SQL Statements

DECLARE CURSOR cursorl FOR
SELECT custid FROM order_table
WHERE ord_date =“2018/10/14';

OPEN cursorl;

DO
FETCH cursorl INTO :v_custid;
SELECT cust_name, cust_address
INTO :v_name, :v_address

FROM cust_table WHERE custid= :v_custid;

/* Process customer data */
UNTIL (no more data);

CLOSE cursorl;

9 IBM Power Systems

DECLARE CURSOR cursorl FOR

SELECT c.cust_name, c.cust_address

FROM order_table o INNER JOIN
cust_table ¢

ON o.custid = c.custid

WHERE ord_date = ‘2018/10/14’;

OPEN cursorl;
DO
FETCH cursorl INTO :v_name, v_address;

/* Process customer data */
UNTIL (no more data);

CLOSE cursorl;

© 2018 IBM Corporation

l

Tell DB2 - “Combine” Your SQL

Multiple SQL Statements

DECLARE CURSOR cursorl FOR
SELECT coll, col2, ... col9
FROM t1
WHERE cust_id = 1234
AND transaction_date = 2018.10.14';

OPEN cursorl;

DO
READ cursorl INTO :cl, :¢c2, ..., :c9;

INSERT INTO t2 VALUES(:cl, :¢2, ..., :¢9);
UNTIL (no more data);

CLOSE cursorl;

10 IBM Power Systems

INSERT INTO t2
SELECT coll, col2, ... col9
FROM t1
WHERE cust_id = 1234
AND transaction_date = 2018.10.14';

© 2018 IBM Corporation

Older - Multiple step SQL

CREATE TABLE t1 AS

(SELECT shipdate, customer, phone,
orderkey, linenumber

FROM item_fact 1 INNER JOIN
cust_dim c

ON c.custkey=i.custkey
WHERE discount=0.08) WITH DATA;

CREATE TABLE t2 AS

(SELECT customer, phone, orderkey,
linenumber, year, quarter
FROM t1 INNER JOIN
starlg.-time_dim t

ON t.datekey=tl.shipdate)
WITH DATA;

SELECT * FROM t2

Avoid explicit multi-step queries — use

Common Table Expressions (CTEs)

Better - SINGLE saL Request

WITH t1 AS
(SELECT shipdate, customer,
phone, orderkey, linenumber

FROM item fact i INNER JOIN
cust_dim c

ON c.custkey = i.custkey
WHERE discount=0.08),

t2 AS
(SELECT customer, phone,

orderkey, linenumber, year,
quarter

FROM t1 INNER JOIN
starlg.time_dim t
ON t.datekey = shipdate)

11 IBM Power Systems

SELECT * FROM t2;

© 2018 IBM Corporation

12 IBM Power Systems

Share and Access

© 2018 IBM Corporation

Eliminate redundancy - CTE
Repeated subselect

SELECT dl1.deptno, dl.empcount FROM
(SELECT deptno, COUNT(*) as empcount
FROM employee GROUP BY deptno) dl1

WHERE d1.empcount =
(SELECT MAX(d2.empcount) FROM
(SELECT deptno, COUNT(*) AS empcount
FROM employee GROUP BY deptno) d2

)

13 IBM Power Systems

WITH staff (deptno, empcount)
AS

(SELECT deptno, COUNT(*) FROM
employee

GROUP BY deptno)

SELECT deptno, empcount FROM
staff

WHERE empcount (SELECT
MAX(empcount) FROM staff)

© 2018 IBM Corporation

Use views to eliminate redund

[fre]]
l

dancy across queries

* Pull out continually repeating patterns across statements

Repeated pattern

SELECT *
FROM employee di1
WHERE d1.deptno IN
(SELECT p.deptnum
FROM projects p
where status=“active’)
AND dl.empid = ?

SELECT count(*)

FROM employee di1

WHERE d1.deptno IN
(SELECT p.deptnum
FROM projects p
where status=“active”)

14 IBM Power Systems

CREATE VIEW active_employee AS
(SELECT di.*

FROM employee di1

WHERE d1.deptno IN

(SELECT p.deptnum

FROM projects p

where status=“active’))

SELECT *
FROM active_employee di1
WHERE dl.empid = ?

SELECT count(*)
FROM active_employee dl1

© 2018 IBM Corporation

l

Speaking of SQL Views

» Good practice is to avoid direct access to tables and physical files
— Create separation between database physical layer and application

* SQL views provide a way to do this logical separation

* Accessing data through views (rather than directly to table) is almost
always best practice when accessing data using SQL

* Views are performance neutral
— The optimizer merges the view definition with the query when the query runs

+ Caution: avoid record level access (RLA - RPG f spec) of an SQL view
— Change application to use SQL access or
— RLA - use logical file

15 IBM Power Systems |
© 2018 IBM Corporation

l

Practical considerations on views and view sharing

+ Avoid tendency to create a ‘super view’ that joins all files together
— Performance can suffer - extraneous underlying files when not necessary

— Itis OK to have multiple views. They provide different ‘perspectives’ of the
data!

* Views are performance neutral. CASTs, concats, and other expressions
can still cause performance problems, even when ‘hidden’

Ex:
CREATE VIEW masterview AS
SELECT (uglyfield1 CONCAT uglyfield2 AS myjoincolumn, ... FROM master...)

SELECT * FROM masterview m INNER JOIN otherfile s ON m.myjoincolumn=s.joincol)

— Note: You might be able to minimize performance impacts with a derived key index

16 IBM Power Systems |
© 2018 IBM Corporation

Refactor

[fre]]
l

* Like all programming languages, it is (too) easy to cut and paste SQL

* Identify when repeats are occurring. Develop a habit of refactoring to use

sharing techniques

— Use CTEs for readability and to eliminate duplicated embedded SELECTs

— Use (inline) UDFs for common, complex, repeated expressions

— Create views when SELECTs get complicated, especially if they get repeated
— Separate code into multiple procedures when repeated code pattern is noticed

17

IBM Power Systems

© 2018 IBM Corporation

18

Coding Styles

IBM Power Systems

[fre]]
l

© 2018 IBM Corporation

* SQL provides numerous ways to do effectively the same thing
— Coding styles may be different across developers

» Often it can be personal preference

19 IBM Power Systems |
© 2018 IBM Corporation

[
1]
Ty
all
[

Different ways, same result

SELECT last_name SELECT last_name
FROM employee FROM employee el INNER JOIN
HERE status="PT" (SELECT DISTINCT deptno FROM
AND deptnum IN location WHERE floornum = 2) dl
(SELECT deptno FROM ON el.deptnum=dl.deptno
location WHERE floornum = 2) HERE status="PT"

SELECT last_name

FROM employee e

HERE status="PT"

AND EXISTS

(SELECT 1 FROM location 1
WHERE floornum = 2
AND e.deptnum=1._deptno)

20 IBM Power Systems |
© 2018 IBM Corporation

l

* So what do you do?
* Many times it is just coding style

* But there are some rules of thumb

21 IBM Power Systems)
© 2018 IBM Corporation

l

Rules of thumb

» Simpler is usually better
— If you don’t need it, don’t add it

* Ex: SELECT * FROM t1... but only a few columns are really used
* Avoid extraneous CASTs

— Plus, it's best practice to name the columns, not use SELECT *

* Include just the tables you need
— Remember the ‘super view’ comment?

— Having primary/foreign key constraints in place will help the optimizer
minimize the negative effects of extraneous tables

22 IBM Power Systems)
© 2018 IBM Corporation

Rules of thumb...

* Independent (non-correlated) subselect is better than dependent

(correlated)

— WHERE o.c1 IN (SELECT i.c2..)

instead of

— WHERE EXISTS (SELECT.. WHERE o.c1=i.c2)

+ Joins over subqueries? It depends
— Joins are usually simpler if they do the same thing
— But subqueries can be better if there are many potential matches

* No ‘fanout’

This can be a turf war!

23

IBM Power Systems

[fre]]
l

© 2018 IBM Corporation

Rules of thumb...

* Pay attention to datatypes on mapping or comparison
— Host variable attribute matching, joining on matching data type columns....

* Let database do the CASTing instead of you
— Don’t add a CAST just ‘to help’ for comparisons

[fre]]
l

+ Cast the non-column instead of the column in a comparison, if a cast is

needed
Ex:

WHERE COL1 = CAST('‘A’ CONCAT 'B’ AS...)

is better than

WHERE CAST(COL1 AS...) = ‘A’ CONCAT 'B’

24

IBM Power Systems

© 2018 IBM Corporation

(1]
1]
My

||
[IY

Rules of thumb...

» Excessive use of ORs of different columns may indicate an
alternate approach is needed
— there may be a data modeling issue
- Ex:
SELECT * FROM emp INNER JOIN project
ON emp.id = project.eid OR emp.name=project.leadname

* Avoid excessive use of NOTs

25 IBM Power Systems © 2018 IBM Corporation

(1]
1]
My

||
[IY

Helpful Objects

26 IBM Power Systems © 2018 IBM Corporation

OR REPLACE

OR REPLACE Option for CREATE statements

» Eliminates need for the Drop statement

* Preserves existing object dependencies & privileges!

» Supported objects: Alias, Function, Procedure, Sequence, Trigger, Variable, View, even Table

FUHDWH#RU#UHSODFH#DOLDV#p|Doldv IRU#vEikhpdlwde4

FUHDWH#RU#UHSODFH#YLHZ#P\bVXUURJDWHY

AN

27 IBM Power Systems

© 2018 IBM Corporation

Il

ALIAS

Allows for simpler reference to database files
» Alias is itself a real object on the system

» Great way to reference a particular file member from SQL

» Hides other complexity like three part naming

FUHDWH#RU#UHSODFH#DOLDV#FXUPRQWK# IRU#PDLQOLE1VDOHV+PDUFK,

28 IBM Power Systems

© 2018 IBM Corporation

[fre]]
l

Global Variables

* Enables simpler sharing of values between SQL statements and SQL
objects (Triggers, Views, etc) across the life of a job/database connection

— Variable value assigned within a job on first reference

« Example #1 — Cache User Information

CREATE OR REPLACE VARIABLE gvdept INTEGER DEFAULT
(SELECT deptno FROM employee WHERE empuserID = USER);

CREATE OR REPLACE VIEW filtered_employee AS (
SELECT firstname, lastname, phoneno FROM employee WHERE deptno = gvdept);

SELECT firsthname, phoneno FROM filtered_employee;

29 IBM Power Systems |
© 2018 IBM Corporation

[fre]]
l

Useful on IBM i

30 IBM Power Systems |
© 2018 IBM Corporation

RUNSQL CL Command

RUNSQL CL command

» Increase adoption of SQL across all interfaces

= Tighter CL program integration than RUNSQLSTM provides
— SQL can be executed without a source file
— Limitations:

= No output support for SELECT statements — temporary tables can be

used
= Error handling limited

RUNSQL1: PGM PARM(&LIB)
DCL &LIB TYPE(*CHAR) LEN(10)
DCL &SQLSTMT TYPE(*CHAR) LEN(1000)

CHGVAR VAR(&SQLSTMT) +

VALUE(" INSERT INTO || &LIB |]".TESTABLE VALUES(100,200)")

RUNSQL SQL(&SQLSTMT) NAMING(*SQL)
ENDSQL1: ENDPGM

31 IBM Power Systems

© 2018 IBM Corporation

DB2 for i Services

= Complete listing found on IBM i developerWorks: https://ibm.biz/DB2Services

= Service objects found in QSYS2, unless otherwise noted

DB2 for i Service | Type of | IBMi7.2 I IBMi7.1
Work Management Services I
PTF Services ALUE_INFO View L INED
View Bane SFTON Lovel 26
UDTF
View B
View fane SFITON Lovet 17
UDTF View SFRUI02 Level 3 SFERTO Lavel 38
Security Services
View l View] SFIOT02 Level B] SPURION Level 38
UDTF
View | UDTE | SEROT02 Level % | SFURTON Level 38
uoTF [View] SFIOT02 Level 9] SFURTON Level 36
View
View T Table [rrerm— ™ [rrer—y SFRATEN Level 23
PP Eshanced: SFUATOZ Level 3 | Enhances: SFOOTON Level 28
Eshanced: SF¥370 Level § | Enhances SPHT01 Level 14
View | Wiwowes Base Intos 9701 Level 23
Vi Eshasced: SFURIOZ Laveld | Lnhanced: SPEETON Lewel 26
- Enhanced: SFITST Lavet § | Enbhanced SFRITDT Livel 34
View
r——— " View SFEI0E Level 3 PRI Lavel 32
- AL VOTF e e — e
View Echanced SFISTE1 Level 76
View
lP[uc'd “"] SPUOT0E Level &] SPERION Lavel 34
View
| View | SFIOT02 Level & | SPERTON Level 34
View
View
Procedure Bane Inouces tim
Enances Lo 26

32 IBM Power Systems

© 2018 IBM Corporation

Summary

»SQL is a rich language providing many different ways to do
‘the job’

» Understanding and applying the underlying concept behind
SQL (set based) helps solve problems in more efficient ways

= Form good SQL habits that work for you while still leveraging
the power of SQL

33 IBM Power Systems |
© 2018 IBM Corporation

34 IBM Power Systems |
© 2018 IBM Corporation

Appendix
Cleaning Up

35 IBM Power Systems |
© 2018 IBM Corporation

[fre]]
(i
Ty
i
m

CASE

The CASE expression allows many ways to get the desired version of data

» Usually quickest way to ‘solve’ a problem, but not necessarily the best
performer

/* Convert numeric indicator, CASE form 1 */

SELECT CASE status

WHEN O THEN “Pending” WHEN 1 THEN “Ordered” WHEN 2 THEN “Shipped”
ELSE “Error’ END AS Status

FROM sales_trans

/* Convert abbreviation, CASE form 1 */

SELECT CASE status

WHEN “ins” THEN “In Stock” WHEN “ord” THEN “Ordered’
ELSE “Out of Stock” END AS Status

FROM sales_trans

/* Standardize names, CASE form 2 */

SELECT CASE

WHEN Cust IN(“Acme”,”ACME”,”acme”,”Acme Corp”) Then “Acme’
WHEN Cust IN(“wile”,”WILE”,”W_.E.”) Then “Wile”

ELSE Cust AS Customer
FROM sales_trans

36 IBM Power Systems |
© 2018 IBM Corporation

Lookup Tables

[fre]]
l

Lookup tables are useful in providing an alternate perspective on data
» Especially when the potential number of values gets large

Can be very effective in ‘cleaning up’ data
= Make sure the key is unique!

Extensible

= A little more upfront work, but pays dividends

CREATE TABLE lookup_customer
, lookup_value varchar(50), UNIQUE(lookup_ key));

(lookup_key char(10)

INSERT INTO lookup status VALUES
(“Acme”,“Acme”),(CACME”, “Acme”),(Cacme”, “Acme”),(CAcme Corp”,“Acme’),
Cwile”,“Wile”),CWILE”,“Wile”),(“W.E.”,“Wile”) ;

SELECT lookup_value AS Customer

FROM sales_trans INNER JOIN lookup_status ON cust

37

IBM Power Systems

lookup_key

© 2018 IBM Corporation

Use view to hide the lookup table

[fre]]
l

orders shipdate = datekey dates

Logically denormalize order and dates

create view orders_plus_dates as (

38

select

from

inner join

on

IBM Power Systems

ds",

o.orderdate,
o.shipdate,
o.quantity,

o.revenue

orders o

dates d

o.shipdate = d.alpha);

© 2018 IBM Corporation

Trademarks and Disclaimers

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered trademarks or trademarks of Adobe Systems Incorporated in the United States, other
countries, or both.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other countries.

Linux is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the United States, other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and Telecommunications Agency which is now part of the Office of Government Commerce.
ITIL is a registered trademark, and a registered community trademark of the Office of Government Commerce, and is registered in the U.S. Patent and Trademark Office.
UNIX is a registered trademark of The Open Group in the United States and other countries.

Cell Broadband Engine and Cell/B.E. are trademarks of Sony Computer Entertainment, Inc., in the United States, other countries, or both and are used under license
therefrom.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Other company, product, or service names may be trademarks or service marks of others.

Information is provided "AS IS" without warranty of any kind.

The customer examples described are presented as illustrations of how those customers have used IBM products and the results they may have achieved. Actual
environmental costs and performance characteristics may vary by customer.

Information concerning non-IBM products was obtained from a supplier of these products, published announcement material, or other publicly available sources and does
not constitute an endorsement of such products by IBM. Sources for non-IBM list prices and performance numbers are taken from publicly available information,
including vendor announcements and vendor worldwide homepages. IBM has not tested these products and cannot confirm the accuracy of performance, capability, or
any other claims related to non-IBM products. Questions on the capability of non-IBM products should be addressed to the supplier of those products.

All statements regarding IBM future direction and intent are subject to change or withdrawal without notice, and represent goals and objectives only.

Some information addresses anticipated future capabilities. Such information is not intended as a definitive statement of a commitment to specific levels of performance,
function or delivery schedules with respect to any future products. Such commitments are only made in IBM product announcements. The information is presented here
to communicate IBM's current investment and development activities as a good faith effort to help with our customers' future planning.

Performance is based on measurements and projections using standard IBM benchmarks in a controlled environment. The actual throughput or performance that any
user will experience will vary depending upon considerations such as the amount of multiprogramming in the user's job stream, the I/O configuration, the storage
configuration, and the workload processed. Therefore, no assurance can be given that an individual user will achieve throughput or performance improvements
equivalent to the ratios stated here.

Prices are suggested U.S. list prices and are subject to change without notice. Contact your IBM representative or Business Partner for the most current pricing in your
geography.

39 IBM Power Systems |
© 2018 IBM Corporation

