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Corporate Overview

40+ years in business
▶ Management and employee owned
▶ 300+ employees
▶ 18 yr average employee tenure
▶ Named one of Canada’s top small 

and medium employers 

22,000+ customers 
▶ 8 offices around the world
▶ North America, Europe, Latin 

America and Asia Pacific
▶ Over 200 partners/resellers

Innovative Products and 
Services
▶ Web, mobile and GUI modernization 
▶ Analysis & productivity
▶ Application & database 

modernization

Application Management 
and Modernization Experts
▶ 15+ years application optimization, 

integration, modernization expertise
▶ 40 years of IBM i product 

development
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Agenda

￭ A little about Python

￭ Why use Python

￭ How to install/determine if installed

▶ IDE

￭ Syntax 101

▶ Variables

▶ Strings

▶ Functions
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Before you freak out

￭ Why isn’t Mike talking about PHP?

▶ Zend was the PHP company

▶ Rogue Wave is the Open Source company

▶ Fresche Solutions is the IBM i solutions company!



A little about Python
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What is it, really?

￭ General purpose language

￭ Easy to get started

￭ Simple syntax

￭ Great for integrations (glue between systems)

￭ Access to C and other APIs

￭ Infrastructure first, but applications, too
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Historically…

￭ Python was conceptualized by Guido Van Rossum in the late 1980’s

￭ Rossum published the first version of Python code (0.9.0) in February of 1991 
at the CWI(Centrum Wiskunde & Informatica) in the Netherlands, Amsterdam

￭ Python is derived from the ABC programming language, which is a general 
purpose language that was also developed at CWI.  

￭ Rossum chose the name “Python” since he was a fan of Monty Python’s 
Flying Circus.

￭ Python is now maintained by a core development team at the institute, 
although Rossum still holds a vital role in directing its progress and as leading 
“commitor”.  
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Python lineage

￭ Python 1 – 1994

￭ Python 2 – 2000 (Not dead yet…)

▶ 2,7 – 2010

￭ Python 3 – 2008

▶ 3.5 – 2015

▶ 3.6.2 – July 2017

▶ 3.7  ETA July 2018
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Python 2 or 3?
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What’s the diff?

￭ Example:

▶ Python 2 print statement replaced by function

● Python 2 – print “Hello World!”

● Python 3 – print(“Hello World!”)

￭ Many more differences, tho…

￭ Which one?

▶ Correct answer:  It depends…

● Many existing libraries are Python 2 

● But 90%+ are also Python 3 compliant, or on their way



Got Python?
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Details at Developerworks

￭ https://www.ibm.com/developerworks/com
munity/wikis/home?lang=en#!/wiki/IBM%20i
%20Technology%20Updates/page/Open%20S
ource%20Technologies

Updated July 
2017, Thanks 

Jesse!

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/Open%20Source%20Technologies
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Need licensed program

￭ 5733OPS Base and option 2 or 4
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Python in action

￭ Command line via green screen
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Hello World
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Most prefer SSH

￭ Command line via SSH terminal 

▶ Recommended strongly by Jesse!

http://ibmsystemsmag.com/blogs/open-your-i/
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Hello World, again…



IDE
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Zend Studio

￭ No, you don’t need to buy Zend Studio

￭ Use Orion, etc.

￭ But if you have Studio or RDi…

▶ Consider something from Eclipse.org

▶ I grabbed PyDev
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Eclipse
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Download PyDev from Eclipse
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Capture URL

￭ Help

▶ Install New Software

▶ Follow prompts
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Editor for Eclipse

￭ Select what you like

▶ Click next
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Confirm versions

￭ Click next again

▶ Then accept EULA
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Watch the pretty status bar
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Python in Eclipse (i.e. Zend Studio)

￭ I bet RDi works, too!
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Alternatives to IBM i when learning

￭ What’s that?  The boss won’t let you install Python on 
the IBM i?

▶ Consider repl.it
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Desktop education at it’s finest

￭ How about your PC?

￭ Head to Python.org site:

▶ Download

▶ Install

▶ Viola!
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￭ Create a file like Ex01hello.py

￭ Open the file

￭ Key up some code and click save

￭ Rinse, repeat…
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￭ Change the file

￭ Click save

￭ Back to qp2term & F9



Syntax !== sin-tax 
(eh, Cook county?)
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How it is written

￭ Indentation means EVERYTHING

▶ Don’t use tab (unless good editor)

▶ 4 spaces – No more, no less

▶ Mismatched indents can cause failures.  Good luck 
finding…

▶ Mismatched spaces and tabs will cause failures

￭ No scope terminators like other languages (WTF?)

￭ Colon introduces start block, then indent

￭ Much more readable than other languages

￭ Get a good editor!!!
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Indentation
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Operators – Similar to other C derivatives 

￭ Comparison

▶ Assignment =

▶ Comparison ==

▶ Inequality !=

▶ Less than <

▶ Greater than >

▶ Less than or equal to <=

▶ Greater than or equal to >=

￭ Mathematical

▶ Addition +

▶ Multiplication *

▶ Division /

▶ Floor division //

▶ Modulus %

▶ Exponentiation **

￭ Booleans

▶ And

▶ Or

▶ Not



Syntax
Variables
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Data types – yeah…about that…

￭ Int

▶ Integer of unlimited size

￭ Float

▶ System defined precision

￭ Complex

▶ Complex with real and imaginary parts

￭ Bool

▶ TRUE & FALSE
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Variables on the fly

￭ Case sensitive

￭ camelCase

￭ Who are you?  type()
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Variables in a file
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Data type?
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Every variable is implemented as a class
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And now for something completely different



50

It’s OK…

￭ Monty Python references are not only acceptable…

▶ They are encouraged!

￭ Documentation is littered with references

￭ Examples are well covered
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Back to variables

￭ Numbers – 3 Data types

▶ Integer 1,2,42

▶ Float 3.14159

▶ Complex: <real> + <imaginary> (not used much…)
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Strings

￭ Immutable objects, cannot change value

￭ Can reassign.  (dynamic typing)

￭ Single or Double quotes, OK (even triple…)

￭ Index starts at 0 (of course…)



53

String formatting

￭ Interpolation, of sorts
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Lists

￭ Ordered group, similar to array

￭ Different data types, ok

￭ Multi-dimensional (sub lists)

￭ Mutable (changeable)
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Tuples

￭ Similar to lists

￭ Immutable (don’t change once created)

￭ Use parenthesis instead of brackets
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Dictionary

￭ Again, like lists but more like hash or PHP Assoc. Array

￭ Mutable

￭ Key value pairs 



Syntax
Control Structures
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ifs
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for loop
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while loop



Syntax
Functions
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Basic functions
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Functions with defaults
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Functions with Keyword arguments



Command Line
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Input form command line

￭ “Talk” to the script…



Database
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Locate the package or “wheel”
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Install commands
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Find the connector

￭ YMMV

￭ With wheels
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Run the pip install

￭ pip == Python installer program
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What version of the DB2 Extension?
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Steps for simple database Access

￭ Import the class

￭ Connect (with or without options

￭ Open the cursor 

￭ Set the SQL 

￭ Read
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Simple database access
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Table info
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Summary – Why Python

￭ Lot’s of libraries

￭ Make it easy to do stuff

￭ OPC / OPO

￭ Education
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End the session
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End-to-End Application Modernization Solutions

Reporting &
Document Distribution

Analysis & 
Productivity

GUI, Web & 
Mobile

Application 
Services & Staffing

IT Strategy
Services

Code & Database
Modernization



THANK YOU

Mike.Pavlak@freschesolutions.com
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