
Introduction to Python for IBM i

Mike Pavlak – IT Strategist

2

Corporate Overview

40+ years in business
▶ Management and employee owned
▶ 300+ employees
▶ 18 yr average employee tenure
▶ Named one of Canada’s top small

and medium employers

22,000+ customers
▶ 8 offices around the world
▶ North America, Europe, Latin

America and Asia Pacific
▶ Over 200 partners/resellers

Innovative Products and
Services
▶ Web, mobile and GUI modernization
▶ Analysis & productivity
▶ Application & database

modernization

Application Management
and Modernization Experts
▶ 15+ years application optimization,

integration, modernization expertise
▶ 40 years of IBM i product

development

3

Agenda

￭ A little about Python

￭ Why use Python

￭ How to install/determine if installed

▶ IDE

￭ Syntax 101

▶ Variables

▶ Strings

▶ Functions

4

Acknowledgements

￭ Kevin Adler

￭ Tony Cairns

￭ Jesse Gorzinski

￭ Google

￭ Memegenerator

￭ Corn chips and salsa

￭ Parrots

￭ And, of course,
spam

5

Before you freak out

￭ Why isn’t Mike talking about PHP?

▶ Zend was the PHP company

▶ Rogue Wave is the Open Source company

▶ Fresche Solutions is the IBM i solutions company!

A little about Python

7

What is it, really?

￭ General purpose language

￭ Easy to get started

￭ Simple syntax

￭ Great for integrations (glue between systems)

￭ Access to C and other APIs

￭ Infrastructure first, but applications, too

8

Historically…

￭ Python was conceptualized by Guido Van Rossum in the late 1980’s

￭ Rossum published the first version of Python code (0.9.0) in February of 1991
at the CWI(Centrum Wiskunde & Informatica) in the Netherlands, Amsterdam

￭ Python is derived from the ABC programming language, which is a general
purpose language that was also developed at CWI.

￭ Rossum chose the name “Python” since he was a fan of Monty Python’s
Flying Circus.

￭ Python is now maintained by a core development team at the institute,
although Rossum still holds a vital role in directing its progress and as leading
“commitor”.

9

Python lineage

￭ Python 1 – 1994

￭ Python 2 – 2000 (Not dead yet…)

▶ 2,7 – 2010

￭ Python 3 – 2008

▶ 3.5 – 2015

▶ 3.6.2 – July 2017

▶ 3.7  ETA July 2018

10

Python 2 or 3?

11

What’s the diff?

￭ Example:

▶ Python 2 print statement replaced by function

● Python 2 – print “Hello World!”

● Python 3 – print(“Hello World!”)

￭ Many more differences, tho…

￭ Which one?

▶ Correct answer: It depends…

● Many existing libraries are Python 2

● But 90%+ are also Python 3 compliant, or on their way

Got Python?

20

Details at Developerworks

￭ https://www.ibm.com/developerworks/com
munity/wikis/home?lang=en#!/wiki/IBM%20i
%20Technology%20Updates/page/Open%20S
ource%20Technologies

Updated July
2017, Thanks

Jesse!

https://www.ibm.com/developerworks/community/wikis/home?lang=en#!/wiki/IBM%20i%20Technology%20Updates/page/Open%20Source%20Technologies

21

Need licensed program

￭ 5733OPS Base and option 2 or 4

22

Python in action

￭ Command line via green screen

23

Hello World

24

Most prefer SSH

￭ Command line via SSH terminal

▶ Recommended strongly by Jesse!

http://ibmsystemsmag.com/blogs/open-your-i/

25

Hello World, again…

IDE

27

Zend Studio

￭ No, you don’t need to buy Zend Studio

￭ Use Orion, etc.

￭ But if you have Studio or RDi…

▶ Consider something from Eclipse.org

▶ I grabbed PyDev

28

Eclipse

29

Download PyDev from Eclipse

30

Capture URL

￭ Help

▶ Install New Software

▶ Follow prompts

31

Editor for Eclipse

￭ Select what you like

▶ Click next

32

Confirm versions

￭ Click next again

▶ Then accept EULA

33

Watch the pretty status bar

34

Python in Eclipse (i.e. Zend Studio)

￭ I bet RDi works, too!

35

Alternatives to IBM i when learning

￭ What’s that? The boss won’t let you install Python on
the IBM i?

▶ Consider repl.it

36

Desktop education at it’s finest

￭ How about your PC?

￭ Head to Python.org site:

▶ Download

▶ Install

▶ Viola!

37

￭ Create a file like Ex01hello.py

￭ Open the file

￭ Key up some code and click save

￭ Rinse, repeat…

38

￭ Change the file

￭ Click save

￭ Back to qp2term & F9

Syntax !== sin-tax
(eh, Cook county?)

40

How it is written

￭ Indentation means EVERYTHING

▶ Don’t use tab (unless good editor)

▶ 4 spaces – No more, no less

▶ Mismatched indents can cause failures. Good luck
finding…

▶ Mismatched spaces and tabs will cause failures

￭ No scope terminators like other languages (WTF?)

￭ Colon introduces start block, then indent

￭ Much more readable than other languages

￭ Get a good editor!!!

41

Indentation

42

Operators – Similar to other C derivatives

￭ Comparison

▶ Assignment =

▶ Comparison ==

▶ Inequality !=

▶ Less than <

▶ Greater than >

▶ Less than or equal to <=

▶ Greater than or equal to >=

￭ Mathematical

▶ Addition +

▶ Multiplication *

▶ Division /

▶ Floor division //

▶ Modulus %

▶ Exponentiation **

￭ Booleans

▶ And

▶ Or

▶ Not

Syntax
Variables

44

Data types – yeah…about that…

￭ Int

▶ Integer of unlimited size

￭ Float

▶ System defined precision

￭ Complex

▶ Complex with real and imaginary parts

￭ Bool

▶ TRUE & FALSE

45

Variables on the fly

￭ Case sensitive

￭ camelCase

￭ Who are you? type()

46

Variables in a file

47

Data type?

48

Every variable is implemented as a class

49

And now for something completely different

50

It’s OK…

￭ Monty Python references are not only acceptable…

▶ They are encouraged!

￭ Documentation is littered with references

￭ Examples are well covered

51

Back to variables

￭ Numbers – 3 Data types

▶ Integer 1,2,42

▶ Float 3.14159

▶ Complex: <real> + <imaginary> (not used much…)

52

Strings

￭ Immutable objects, cannot change value

￭ Can reassign. (dynamic typing)

￭ Single or Double quotes, OK (even triple…)

￭ Index starts at 0 (of course…)

53

String formatting

￭ Interpolation, of sorts

54

Lists

￭ Ordered group, similar to array

￭ Different data types, ok

￭ Multi-dimensional (sub lists)

￭ Mutable (changeable)

55

Tuples

￭ Similar to lists

￭ Immutable (don’t change once created)

￭ Use parenthesis instead of brackets

56

Dictionary

￭ Again, like lists but more like hash or PHP Assoc. Array

￭ Mutable

￭ Key value pairs

Syntax
Control Structures

58

ifs

59

for loop

60

while loop

Syntax
Functions

62

Basic functions

63

Functions with defaults

64

Functions with Keyword arguments

Command Line

66

Input form command line

￭ “Talk” to the script…

Database

68

Locate the package or “wheel”

69

Install commands

70

Find the connector

￭ YMMV

￭ With wheels

71

Run the pip install

￭ pip == Python installer program

72

What version of the DB2 Extension?

73

Steps for simple database Access

￭ Import the class

￭ Connect (with or without options

￭ Open the cursor

￭ Set the SQL

￭ Read

74

Simple database access

75

Table info

76

Summary – Why Python

￭ Lot’s of libraries

￭ Make it easy to do stuff

￭ OPC / OPO

￭ Education

77

End the session

79

End-to-End Application Modernization Solutions

Reporting &
Document Distribution

Analysis &
Productivity

GUI, Web &
Mobile

Application
Services & Staffing

IT Strategy
Services

Code & Database
Modernization

THANK YOU

Mike.Pavlak@freschesolutions.com

mailto:Mike.Pavlak@freschesolutions.com

